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Equilibrium and nonequilibrium growth phenomena, e.g., surface growth, generically yields self-affine
distributions. Analysis of statistical properties of these distributions appears essential in understanding statis-
tical mechanics of underlying phenomena. Here, we analyze scaling properties of the cumulative distribution of
iso-height loops �i.e., contour lines� of rough self-affine surfaces in terms of loop area and system size. Inspired
by the Coulomb gas methods, we find the generating function of the area of the loops. Interestingly, we find
that, after sorting loops with respect to their perimeters, Zipf-like scaling relations hold for ranked loops.
Numerical simulations are also provided in order to demonstrate the proposed scaling relations.
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I. INTRODUCTION

Self-affine distributions are ubiquitous in many phenom-
ena in nature, such as in growing surfaces and interfaces
�1–4�, fractured media �5,6�, and graphs of two-dimensional
turbulent flows �4,7�. Self-affine distributions have also been
used as a tool to study scaling properties of two-dimensional
statistical models by mapping these models to a two-
dimensional Coulomb gas �8,9�. Moreover, crystal growth,
the growth of bacterial colonies, and the formation of clouds
in the upper atmosphere �10� are all examples of nonequilib-
rium phenomena which grow self-affine rough surfaces. The
above applications on a fundamental level make the surface-
growth problem as a paradigm for a broad class of problems
in the context of nonequilibrium statistical mechanics.

Self-affine surfaces can be described by their height dis-
tribution function. From statistical point of view, it is neces-
sary to explore topography of this kind of surfaces. In such
surfaces, heights are invariant under rescaling, namely, h�r�
�b−Hh�br�, where H is called the roughness exponent or the
Hurst exponent. It implies that in a self-affine surface, the
variance of the surface height, i.e., ���h�x�− �h��2�, scales as
LH, where L is the size of the system and average is taken
over x. If we require translational and rotational invariance
of the surface then the structure function of this surface be-
haves as

C2�r� = ��h�x� − h�x + r��2� 	 
r
2H. �1.1�

The above equation gives a simple formula to calculate the
roughness exponent. To determine that a given surface is
self-affine or multiaffine we need to measure the pth order
structure function defined by Cp�r�= �
h�x�−h�x+r�
p�. The
exponent hierarchy �p is defined through the relation Cp�r�
�r�pH. The exponent �p varies linearly with p for a self-
affine surface. For a multiaffine surface, instead, it would
vary nonlinearly with p �11�. The Fourier space counterpart
of the structure function is Fourier power spectrum S�q�
= �
h�q�
2�, where h�q� is the Fourier transform of h�r�.

Equation �1.1� gives the scaling relation for the power spec-
trum, i.e., S�q�	
q
−2�1+H�, for small values of q or large
values of r. One way to generate a Gaussian ensemble of
self-affine surfaces is by taking each Fourier height as an
independent Gaussian random variable with variance given
by S�q�	
q
−2�1+H�. In other words,

P�h 	 exp�−
k

2
�

0

�

d2qq2�1+H�hqh−q� , �1.2�

where �=1 /a is the high-momentum cutoff and k is the
stiffness. A family of self-affine surfaces having all the re-
quired properties can be generated by the above distribution.
For rough surfaces with unbounded heights we have 0�H
�1, where the higher H is related to smoother surface with
hills. In a self-affine distribution H�1 /2�H�1 /2�, it im-
plies positive �negative� correlations among the increments
of the generated values, H=1 /2 means that the statistics of
the surface follows that of a Brownian motion. At H=0, it is
possible to write Eq. �1.2� in the real space by using ordinary
derivative P�h	exp�− k

2�0
Ld2x��xh�2�. For the general case

we should replace ordinary derivative with the fractional
one, that is, P�h	exp�− k

2�0
Ld2xh�−�2�1+Hh�, where the frac-

tional derivative is defined by �−�2�1+Heiq·x=−
q
2+2Heiq·x

�for more details see �12��.
The contour lines that are generated by a cut through the

surface at a certain height are important in characterizing
self-affine surfaces. In Fig. 1 we plotted an example of the
set of contour lines of a rough surface. The statistical prop-
erties of contour lines of rough surfaces show fractal behav-
ior. The accepted fractal dimension of a contour line D
= 3−H

2 was found by Kondev and Henley �KH� by using scal-
ing arguments �13�. Recently, Schramm and Sheffield �14�
proved rigorously that the contour lines of Gaussian free
field with H=0 are conformally invariant with fractal dimen-
sion D= 3

2 , which is in agreement with the KH result. Con-
formally invariant curves in statistical physics can be inves-
tigated by Coulomb gas field theory �8�. The most well-
known loop model that can be investigated by this field
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theory is the O�n� model, which can be defined on the hon-
eycomb lattice as follows: take the ensemble of loops on the
honeycomb lattice so that the generating function of the
model is given by Z= �xlnN, where N and l are number of
the loops and bonds, respectively, n is the weight of each
loop, and x is the weight of each bond. At the critical point,
this loop model can be investigated, after mapping the loop
model to the solid on solid �SOS� model �8�, by the free field
theory P�h	exp�− k

2�0
Ld2x��h�2�. It is also possible to find

the scaling exponents of conformal curves by the above field
theory �8�.

Since the height ensemble of a rough surface is not con-
formally invariant, rigorous investigating of their contour
lines is more difficult than the Coulomb gas case. Indeed,
one cannot employ the powerful tools of conformal field
theory �CFT� to study this system. For a rough surface with
a generic H there is no rigorous proof for results obtained by
KH �15�. Nonetheless, it seems that the contour line en-
semble shows scaling properties similar to the conformal
curves encountered in some models such as the contour lines
of tungsten oxide �WO3� �16� and KPZ surfaces �17�.

In this paper, by using techniques which are common in
the realm of Coulomb gas field theory, we discuss scaling
laws for some properties of contour lines of self-affine rough
surfaces. The scaling properties of the cumulative distribu-
tion of the number of contours versus the area of the con-
tours and the size of the system are also obtained. In addi-
tion, we find a close relation between the cumulants of A, the
area of contour lines, and the eigenvalues of the fractional
Laplacian. Finally, we introduce the scaling property of
ranked contour lines versus both rank and system size �Zipf’s
law�. Numerical simulations are also provided to substantiate
our analysis.

II. NUMERICAL METHODS

To generate self-affine rough surfaces in our numerical
simulations, we have used the successive random addition
method �18�. In our simulations we have generated surfaces

of size L�L with L� �400,600,800,1200,2000,3000,
4000. To investigate the effect of roughness exponent on the
scaling relations we used several values of H� �0.3,0.4,
0.5,0.6,0.7. In each case, all calculations have been aver-
aged over 200 realizations.

To generate the loops in the contour lines we used a con-
touring algorithm that treats the input matrix as a regularly
spaced grid. The algorithm scans this matrix and compares
the values of each block of four neighboring elements �i.e., a
plaquette� in the matrix to the contour level values. If a con-
tour level falls within a cell, the algorithm performs a linear
interpolation to locate the point at which the contour crosses
the edges of the cell. The algorithm connects these points to
produce a segment of a contour line. After generating the
contours of a given surface, in order to eliminate the effect of
the edges of the lattice we have excluded the contours cross-
ing the edges of the lattice.

To show the goodness of the fits and consistency of our
simulations with theory, we used the following three differ-
ent methods for estimating the exponents: �a� we numerically
calculated local slops of the curves by fourth-order numerical
differentiation for nonuniform data points; e.g., in the case of
Eq. �3.2�, derivation of log10�NA� relative to log10 A. �b� We
present some of the curves by dividing both sides of a scal-
ing relation to the claimed power law to show how seriously
they are aligned or how they deviate from a horizontal line,
e.g., Fig. 2. And, �c� we used Bayesian analysis without prior
distribution, namely, Likelihood analysis �19–22� to calculate
the accuracy of the exponent generated from our numerical
results.

III. CUMULATIVE DISTRIBUTION OF AREA

A key difference between the contour lines in Coulomb
gas field theory and the self-affine rough surfaces is in the
fractal dimension of the set of all contour lines. For a given

FIG. 1. Small part of contour lines of a rough surface with size
30002 and H=0.5; by zooming in on the picture one can see many
small loops.
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FIG. 2. �Color online� Scaling relation for cumulative distribu-

tion of areas. Curves show
NA

A−d/2 for rough surfaces with size 40002

and different roughness exponents.
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self-affine rough surface, this fractal dimension is d=2−H. It
is well-known that many of the scaling relations in Coulomb
gas field theory remain unchanged just by substituting this d
as the dimension of our set. To give an example, let us define
the fractal dimension of a contour line D as l	RD, where l is
the perimeter of the contour and R is the radius of gyration.
Moreover, the probability of finding a contour loop with
length l is Nl	 l−�. One can show that there is a hyperscaling
relation between the scaling exponents D and � as follows:

D�� − 1� = d , �3.1�

which is exactly the same as the hyperscaling relation for
domain walls in statistical models �23�. Following KH, the
cumulative distribution of the number of contours with area
greater than A has the following form:

NA 	
C

Ad/2 . �3.2�

This gives the right answer for Coulomb gas loops with zero
roughness exponent �23�. In the rest of the paper using new
conjectures we will demonstrate some other evidence to sup-
port the above relation. This in turn leads us to several new
scaling relations.

We checked Eq. �3.2� by using numerical simulations for
different H’s, see Fig. 2. As is shown, we plot log10�

NA

A−d/2 �
versus log10�A� to show how seriously they follow Eq. �3.2�.
The straight horizontal curves exhibit that the proposed scal-
ing relation is preserved up to 2 orders of magnitude of A. As
is seen, in the case of H=0.3 we have a small deviation from
the proposed exponent at large values of A, which is related
to finite-size effects. For a given lattice size and for small
values of H, there are not so many large contour lines, but
we have many small ones. This is led by the nature of self-
affinity at small Hurst exponents. There are no deviations
when we increase H �Fig. 2�. In Table I, we report the best fit
values calculated by the likelihood analysis �19–22� at 68.3%
and 95.4% confidence levels.

For loops corresponding to surfaces with H=0, using
Coulomb gas techniques, Cardy and Ziff showed that C has
the universal form as a function of the system size L for
different critical statistical physics models �24�. To calculate
C, Cardy and Ziff evaluated the total area inside all loops
using two different methods, and then they found the univer-
sal form of C. Inspired by this method, we argue to give
some new scaling relations for contour lines of self-affine

rough surfaces. Using Eq. �3.2� it is straightforward to show
that �Atot�=CLH, for 0�H�1, and for H=0 it has a loga-
rithmic form.

Let us consider a typical point x with height h above the
horizon �we cut our self-affine surface by a plane�. If we
draw a circle of radius h1/H around the point, since we are
dealing with a rough surface, all points inside the circle will
be above the horizon. In other words, inside the loop is a
compact region with the fractal dimension 2. Since the frac-
tal dimension of the clusters is 2, one could obtain the total
area of the clusters proportional to the area of the system.
This is just a lower bound for the interior areas of the
loops—see �25�. In addition, it is also possible to see from
simulation that by cutting the surface from the average
height one could get always clusters of the order of the sys-
tem size. Thus one can get the following scaling relation for
C with respect to the system size:

C 	 L2−H. �3.3�

This indicates that the number of contour lines with area
greater than A per total length of all contours, i.e., L2−H, is
independent of the system size. It is also worth noting that
the cumulative distribution of the contours with area A is
independent of a, the ultraviolet cutoff, which is another
length scale. Our simulations confirm the validity of the scal-
ing relation �3.3� for different values of H, see Fig. 3.

The above result is also useful to get another nontrivial
equation for contour lines. To calculate the total area we can
use the formula

�Atot� =� �d�r��d2r , �3.4�

in which d�r� is the minimum number of loops which must
be crossed to connect r to the edge of the lattice. Since the

TABLE I. The best fit values of exponent d /2 derived by using
the likelihood method. 	 denotes standard deviation of each calcu-
lated exponent.

H Theory Local exponent �1	� Local exponent �2	�

0.3 −0.850 −0.840
0.010 −0.840
0.020

0.4 −0.80 −0.795
0.006 −0.795
0.020

0.5 −0.750 −0.752
0.010 −0.752
0.025

0.6 −0.700 −0.703
0.005 −0.703
0.020

0.7 −0.650 −0.652
0.005 −0.652
0.020
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FIG. 3. �Color online� Scaling relation for the coefficient of
cumulative distribution of areas for rough surfaces with respect to
system size for different values of H as shown in the graph. Slops of
the curves from top to bottom are given by 1.66
0.04, 1.60
0.03,
1.53
0.03, 1.46
0.04, and 1.37
0.04.
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total area inside the loops is proportional to the area of the
system, we conclude

d�r� 	 � r

L
�2H

. �3.5�

This is reminiscent of the height correlation function in the
self-affine rough surfaces. For H=0 the relation is logarith-
mic and was proved explicitly in �24�.

These results show that one may investigate contour loops
of rough surfaces by defining currents for the loops. Again,
by analogy with the Coulomb gas methods one can define
J��x ,y�	�g

���h

LH as the current density of loops. This is a
natural candidate if we imagine that the height function is
extended to the two-dimensional manifold in such a way that
it is constant within each plaquette. Normalization with re-
spect to width is necessary because we have a rough surface
where width is changing by size. This definition for the cur-
rent density means that we can map our height model to the
contour lines or vice versa. Since iso-height lines have the
same role as the domain walls between the positive and
negative heights, the directional derivative of h along a con-
tour must be zero and it must vary along a line normal to the
contour. Using the above function to parameterize the geom-
etry of contour line, it is possible to write

A = −
1

2
� � 
x − x�
��y − y��Jy�x,y�Jy�x�,y��drdr�.

�3.6�

This equation is independent of our definition of currents. By
using simple dimensional analysis, it is not difficult to find
our special normalization, i.e., 1

LH . One can check that Eq.
�3.6� gives �Atot�	L2. Using Eq. �3.6�, inspired by Cardy’s
argument �23�, we find the generating function of the cumu-
lants of area of contour loops. The argument for getting cu-
mulants of area is as follows. For the simplicity, we use the
Dirichlet boundary condition, h=const, on the boundary of

the system, which means that loops do not cross the bound-
ary. After integration by parts, Eq. �3.6� gives A��d2rh2�r�.
In simulation and experiment there are many curves emerg-
ing from the boundary and going back to another point in the
boundary; therefore, there will be no exact Dirichlet bound-
ary condition. However, as we will see in the simulations,
many of our scaling relations, especially the distribution of
contours, are independent of the boundary conditions. By
using the real-space representation of the height distribution
and the Gaussian integral, one can derive

�e−uA� =

det�− �2+2H +
2gu

kL2H�−1/2

det�− �2+2H�−1/2 , �3.7�

where k is the stiffness and u is an auxiliary field. One can
write the above equation as an infinite sum by using Fourier
transform

�e−uA� = e−1/2�mln�1+2guL2/k�m�, �3.8�

where
�m

L2+2H are the eigenvalues of the fractional Laplacian
with Dirichlet boundary conditions �12�. Expanding Eq. �3.8�
gives the higher cumulants of A,

�Ap� 	 L2p�
m

1

�m
p . �3.9�

The sum is convergent for all values of p and H except p
−1=H=0, which is logarithmic with respect to L. To check
the above equation we calculated �Ap� for surfaces with dif-
ferent roughness exponents and different sizes. For p=1 all
of the surfaces have �A1�	L� with �=2
0.05. For higher
moments one can write �Ap�	L�p with �p	�1p. For sur-
faces with roughness exponent between 0.3 and 0.7, the
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FIG. 4. �Color online� Top: Moments �Ap� of loop areas of rough surfaces versus system size; for p=1, 3, and 5. Here we have the
exponents �1=2.02
0.06, �3=6.05
0.55, and �5=11.03
1.06. Bottom: �p versus p for surfaces with size 40002 with different roughness
exponents H as indicated on the graph.
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exponent �1 varies from 1.94 to 2.15. One can see in Fig.
4�b� that all of the �p’s are linear with respect to p. The
deviation from �=2 could be related to our restriction in
getting larger sizes in simulation.

IV. ZIPF’S LAW FOR CONTOUR LINES

Another interesting scaling relation is the universality of
the distribution of the ranked loop perimeters, which is
named Zipf’s law �26�. Following �26,27�, the average pe-
rimeter of the nth largest cluster can be found by Eq. �3.2�,
which is called by Mandelbrot the Zipf distribution

ln 	
LD

nD/d , �4.1�

where d is the fractal dimension of all loops and D is the
fractal dimension of one of loops. We should emphasize that
we have normalized the equation with the appropriate power
of total number of contour loops, so we ignore here the scal-
ing of the total number of loops �26�. We have numerically

checked this scaling relation for self-affine surfaces, both
with respect to rank n and the system size L. As shown in
Fig. 5, in three subfigures �for H� �0.3,0.5,0.7� for eight

different realizations, we presented the log-log plot of
ln

n−D/d

versus n. Here, ln shows a scaling relation according to Eq.
�4.1�. For the case of H=0.3, the scaling relation is preserved
for over 2 orders of magnitude of n. Since the number of
small loops is few, in larger values of H=0.5,0.7, we could
see the agreement just for 1 order of magnitude.

To calculate the exponent in our numerical results let us
consider ln	n−�. We calculated the exponent; Fig. 5 �bottom
right� depicts the variation of � versus H �the average is over
different realizations�. Since in higher Hs we have lower
number of loops, thus � of higher values of H have lower
accuracy. We also numerically checked the relation of ln ver-
sus L. In the case of H=0.3, we obtained a scaling relation
with exponent 1.38
0.03, which is near theoretical value
1.35. In higher values of H, the estimated exponents are not
sufficiently accurate because the number of loops in smaller
system sizes is low. With the same method one can find the
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FIG. 5. �Color online� Top left �H=0.3�, right �H=0.5�, and bottom left �H=0.3�: for system size of L=4000, the curves of ranked loop
perimeters divided by n−D/d vs rank numbers are shown for eight different realizations. Bottom right: the squares stand for the averaged �
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d .
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average area and the radius of gyration as a function of rank

An 	
L2

n2/d , Rn 	
L

n1/d . �4.2�

Both of the above formulas are in good agreement with our
numerical results. In these kinds of scaling relations the error
of the estimated exponents for large system sizes are consid-
erably small. We believe Eqs. �4.1� and �4.2� provide a good
method to calculate the fractal dimension of a single contour
as well as the fractal dimension of all contours.

V. DISCUSSION AND CONCLUSION

In summary, by using field theory of rough surfaces and
considering current for the model, we confirmed the previ-
ously known scaling relation for cumulative distribution of
area. In addition, we found a scaling relation for this distri-
bution with respect to system size. Since the action is not
translationally invariant and the small momenta are impor-
tant, naturally scaling properties depend to the system size. It
seems that large momenta do not contribute in the scaling
properties. Although system is not invariant under homoge-
neous translation, it is not difficult to see that it is invariant
under h→h+��a�x, which means it is inhomogeneously
translational invariant. Using inhomogeneous translation one
can define the currents J��x ,y�	���

1−Hh corresponding to
Wilson loops of the theory and rederive the results of Sec. II.
Since we only investigated the scaling properties of the con-
tour lines, these two different given currents lead to the same
scaling relations.

Considering these currents for contour lines we think that
there may be a close relation between the statistics of these

lines and the eigenvalues of fractional Laplacian. In this pa-
per, we discussed leading scaling behavior with respect to
the system size, however, to see the effect of the eigenvalues
of the fractional Laplacian one needs more careful study of
the amplitudes as well. Since there is no conformal invari-
ance in the height ensemble, finding the exact values of d�r�
and C using the techniques of the Coulomb gas is not trac-
table.

We confirmed our proposed scaling relations by simula-
tions through cutting a self-affine surface at different heights.
We have only interpreted the results for the case of cutting
the surface at its mean height. But we checked also all of the
scaling relations for the cases of cutting the surface at heights
h= �0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9	, where 	 is the
height variance of the surface. We have not seen any mean-
ingful deviation from what we obtained for the mean height.

We also discussed Zipf-like scaling relations for the con-
tour lines of self-affine rough surfaces and verified them via
simulations. We believe the same scaling relations are ap-
plied to the clusters of rough surfaces but with different ex-
ponents.
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